
A Causal Discovery Approach to Streamline Ionic Currents Selection to
Improve Drug-Induced TdP Risk Assessment

Safaa Al-Ali1, Jordi Llopis-Lorente2, Maria Teresa Mora2, Maxime Sermesant1, Beatriz Trenor2,
Irene Balelli1
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Abstract

Causality is of paramount importance in bio-medical
data analysis: assessing the causal relationships between
the observed variables allows to improve our understand-
ing of the tackled condition and better support decision-
making. Torsade de Pointes (TdP) is a serious drug-
induced cardiac side effect which can lead to sudden death.
TdP is related to abnormal repolarizations in single cells,
and the minimum set of ion channels needed to correctly
assess TdP risk is still an open question. In this work, we
propose to apply the causal discovery method ICA-Linear
Non-Gaussian Acyclic Model (ICA-LiNGAM) to uncover
the relations across the 7 ion channels identified by the
Comprehensive in vitro Pro-arrhythmia Assay (CiPA) ini-
tiative as potentially related to the induction of TdP: IKr,
INa, INaL, ICaL, IK1, IKs and Ito. We consider 109 drugs of
known torsadogenic risk listed by CredibleMeds. We iden-
tify IKr, INaL and ICaL as the ones that directly affect TdP-
risk assessment, and suggest that INa perturbations could
potentially have a high impact on pro-arrhythmic risk in-
duction. Our causality-based results were further con-
firmed by independently performing binary drug risk clas-
sification, which shows that the combination of the 3 se-
lected ionic currents maximizes the classification accuracy
and specificity, outperforming state-of-the-art approaches
based on alternative ion channel combinations.

1. Introduction

Identifying causal links between variables of importance
takes a leading position in facilitating stable inference and
making rational decisions in several areas, by overcoming
the bias induced through standard correlation-based statis-
tical and machine-learning approaches. For instance, in
medicine, understanding the causal relationship between
risk factors and disease can help develop effective preven-
tion and treatment strategies and prioritize the available in-

formation to improve risk assessment tools.
Causal discovery is a branch of causal research, whose

aim is to learn the cause-effect relationships of observa-
tional variables, typically through causal graphs. Several
methods have been proposed to learn such graphs, for in-
stance by exploring assumptions on the independent causal
function representing the relation between each variable
(or node) and its parents’ nodes in the graph, or the in-
dependent variable-specific noise term [1]. Among them,
the linear non-Gaussian acyclic model (LiNGAM) [2] as-
sumes that the causal relations between variables are sim-
ply linear and their noise term is non-Gaussian to enforce
the identification of the causal directions. An extension
of the LiNGAM algorithm, ICA-LiNGAMfurther assumes
that the observed variables are not independent due to the
presence of unobserved latent variables [3]: independent
component analysis (ICA, [4]) is used to separate the ob-
served variables into their independent components, hence
LiNGAM is applied.

Drug-induced Torsade de Pointes (TdP) is one of the
most frightening drug side effects since it can trigger ven-
tricular fibrillation and ultimately lead to sudden death.
TdP is closely associated with abnormal repolarization,
hence by a prolongation of the QT interval. The hu-
man ether-à-go-go-related gene (hERG) is responsible for
the rapid component of the delayed rectifier current (IKr)
which is one of the major repolarizing currents in the heart
[5]. Proarrhythmic risk assessment of drugs is tradition-
ally based on the evaluation of the hERG channel and the
measure of the delayed ventricular repolarization on the
electrocardiogram (ECG), i.e. the QT interval prolonga-
tion [6]. This method can accurately classify high TdP-risk
drugs through a single analytical assessment considering a
unique ion channel and exclusively focusing on ventricu-
lar repolarization [7]. However, it has been observed (eg
[8]) that IKr blocking may be not sufficient to assess drug-
induced TdP risk and is prone to produce false positives.
Consequently, for a more reliable drug safety assessment,
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recent studies have been proposed to incorporate multiple
ion channels, since drug-altered currents may interact and
cause disrupted cardiac electrophysiology [9–11]. Several
ion channels’ combinations have been retained in the liter-
ature as the most relevant to assess drug-induced TdP risk,
such as IKr, ICaL, INa [9, 12] or IKr, ICaL, INaL, and IKs [10].

In this work, we propose to use ICA-LiNGAM for up-
stream ion channels’ selection, to improve TdP risk as-
sessment. We introduce the causal discovery algorithm
ICA-LiNGAM and the considered drug data set. In Sec-
tion 3, we present our results: the uncovered relation-
ships between the ion channels and the binary drugs’ label,
and their straightforward applicability for the classification
task. Section 4 provides our conclusions and discussion of
future directions for the presented work.

2. Materials and method

2.1. Drugs data-set

A total of 109 drugs from CredibleMeds1 with known
torsadogenic risk (37 with known, 14 with possible, 13
with conditional, and 45 with no proven risk) were used
in this study. More details about the data set are avail-
able in [10] and the supplementary material herein. We
consider a binary classification task, labeling drugs of con-
firmed or possible TdP-risk as unsafe, and drugs with con-
ditionally or no proven TdP risk as safe.

For every drug, we use two pharmacological data: the
IC50 for each of the seven ionic currents addressed by the
CiPA initiative, and the effective free therapeutic plasma
concentration (EFTPC), defined as the drug concentration
in the plasma required to produce the desired therapeutic
effect in the body. We consider the ion channels blocked
fraction, here denoted by BfIon:

BfIon :=

[
1 +

(
IC50Ion
EFTPC

)h
]−1

, (1)

where h denotes the Hill coefficient, the number of drug
molecules assumed to be sufficient to block an ion channel.

2.2. ICA-LiNGAM algorithm

ICA-LiNGAM [3], summarized in Algorithm 1,
is a function-based causal discovery algorithm [13],
which extends the Linear Non-Gaussian Additive Model
(LiNGAM) [2]. LiNGAM assumes that the causal rela-
tions between observed variables can be represented by a
non-Gaussian linear acyclic model, i.e. a directed acyclic
graph (DAG) [14] where the causal functions between each
variable and its parents’ nodes are linear, and the error term

1See CredibleMeds (accessed March 9, 2020)

follows a centered non-Gaussian distribution with non-
zero variance. Let X = {xi, i = 1, . . . , n} be the set
of observed variables: we can encode the DAG structure
through its adjacency matrix B = {bij}, where bij repre-
sents the strength of the connection between the variables
xi and xj . The matrix B could be permuted to be strictly
lower triangular, in accordance with the acyclicity assump-
tion. Finally, denoting by Pai the set of parents nodes of
xi (i.e. the nodes who causally precede xi), the generating
process for variable xi ∈ X writes:

xi =
∑

xj∈Pai

bijxj + ei, (2)

where ei ∈ E are the error terms. We can rewrite Equa-
tion (2) in a matrix form,

X = (I−B)−1E, (3)

I being the identity matrix. The ICA-LiNGAM method
considered here is based on the additional assumption that
observed variables may be dependent due to the pres-
ence of unobserved latent variables [3]. Indeed, Equa-
tion (3) defines the independent component analysis model
since the noise terms ei are independent and non-Gaussian.
ICA [4] is used to estimate the mixing matrix A = (I −
B)−1. Further, a set of permutations and scaling of the ob-
tained independent parameters are performed to obtain the
causal order k and the adjacency matrix as well.

Algorithm 1 ICA-LiNGAM
Input: Data matrix X
Output: B̃, estimation of B (Equation (3))
1. Given X, use ICA to obtain the decomposition X =
AS, where S contains the independent components. De-
fine W := A−1.
2. Compute the matrix W̃, the unique permutation of W
without any leading diagonal zero.
3. Compute W̃′, which corresponds to W̃ after dividing
each row by its corresponding diagonal element.
4. Compute an estimation B̂ of B := I− W̃′.
5. Estimate the causal order for each variable xi ∈ X by
finding the permutation matrix P̃ of B̂ such that B̃ :=

P̃B̂P̃T is as close as possible to a strictly lower triangular
structure (

∑
i≤j B̃

2
ij).

6. Return the permuted matrix B̃.

3. Results

In Figure 1 we show the causal graph obtained by ap-
plying ICA-LiNGAM, using the python package gcasle,
to the ion channels blocked fractions, for the seven ionic
currents identified by the CiPA initiative: IKr, INa, INaL,
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ICaL, IK1, IKs and Ito. We introduce an extra Label node to
investigate the relations of the blockade parameters with
the known pro-arrhythmic risk. We used 5-fold cross-
validation over the 109 drugs, and the final graph repre-
sented in Figure 1 accounts for the occurrences of causal
arrows identified in each fold. A directed causal arrow
from variable A to variable B indicates that changes in the
parent node A can directly cause changes in the children
node B. One can see that the IKr channel is systemically
identified as a direct cause leading to the drug label, which
is directly caused as well by ICaL and INaL channels. Even
though INa channel is not affecting the node label directly,
it still plays an important role since it is causally related
to IKr, ICaL, and INaLchannels. Indeed, the obtained DAG
suggests that if a drug has an impact on INablockade, it will
also have an impact on its descendant ion channels block-
ade, IKr, ICaL, INaL.

Label

Kr

NaL

CaL

Na

To

K1

Ks

Figure 1: Causal graph generated by ICA-LiNGAM,
through 5-fold cross-validation. The arrow thickness rep-
resents the number of occurrences of the causal arrow over
the 5 splits.

Next, we perform an independent binary classification
of the 109 drugs used for this study. In particular, we
used two classical machine learning classifiers: Random-
Forest and K-Nearest-Neighbors, whose final prescriptions
are combined through a majority voting classifier [15]. A
5-fold cross-validation was performed as well for the clas-
sification task. In Figure 2 we present the accuracy and
specificity scores for the ion channels combinations re-
vealed by the obtained causal graph (Figure 1), starting
from the most stably identified parent of the label node,
IKr, up to its farthest ancestors. The highest accuracy lev-
els are achieved by the two combinations (IKr, ICaL, INaL)
and (IKr, ICaL, INaL, INa). For the ion-combination (IKr, ICaL,
INaL) we reach a mean accuracy level of 93.59%, whereas
the combination ( IKr, ICaL, INaL, INa) allows to achieve a
mean accuracy of 92.68%.

Furthermore, our causality-based classification shows a
high mean specificity, reaching 94.70% for (IKr, ICaL, INaL).
There is no further improvement beyond this combination,
indicating that the causal graph has been effective in iden-
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Figure 2: Accuracy and specificity of drugs’ safety classi-
fication based on the combinations of ionic currents sug-
gested by the DAG in Figure 1, using the voting classifier
with Random-Forest and K-Nearest-Neighbors. The white
dots correspond to the mean values and the numerical val-
ues plotted over each box represent the median.

tifying the main parameters which directly inform the drug
safety classification, namely (IKr, ICaL, INaL). These results
are consistent with the importance of the main outward
current IKr to assure cardiac repolarization and the counter-
acting effects of inward currents ICaL and INaL to maintain
repolarization reserve and prevent proarrhythmic events.

Table 1 summarizes the drug safety classification per-
formance of our causally-based method compared to some
state-of-the-art methods [9, 12]. Our ion-combination se-
lection shows the best mean AUC and specificity scores,
i.e. 0.94 and 94.7% respectively, outperforming the other
methods. Unlike cardiac simulation classifiers, our ap-
proach does not require any cardiac action potential model
to assess drug TdP risk: it only depends on the pore block
model based on IC50 and Hill coefficients for various ion
channels to calculate drug blockade. These results empha-
size the importance of considering ion channels ICaLand
INaLwith IKr to improve proarrhythmic risk classification.

For completeness’ sake, we have tested the efficacy of
our method for a 4-class classification (see Sec. 2.1),
which reveals that (IKr, ICaL) is preferable for this task,
along with a great heterogeneity across classes: this de-
serves further analysis, and is left as future work.
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Table 1: Mean values of the performance (AUC, accuracy,
sensitivity, and specificity) of our causality-based classifi-
cation approach compared to some state-of-the-art meth-
ods using a set of ion currents for TdP-risk classification.

Ion combination AUC Acc. Sens. Spec. Ref.
Kr,CaL,Na 0.91 90.9% 88% 87% [9]
Kr,CaL,Na NA 87% 73% 89% [12]
Kr,CaL,NaL 0.94 93.59% 92% 94.7% Our method

4. Conclusion

The study presented here highlights the importance of
using causal discovery methods to infer ion channels se-
lection for the drug-induced TdP risk. The obtained results
suggest that IKr, ICaL and INaL are the most critical ion cur-
rents to be considered for TdP risk assessment. These re-
sults are consistent with previous works (e.g., [10]) where
the authors showed the crucial role of these ionic currents
in the computation of in-silico arrhythmogenic biomark-
ers proposed for TdP risk assessment. In addition, the
proposed causal approach can bring valuable insights con-
cerning the downstream effects of perturbation of other
ionic currents, and the obtained causal graph can further
be deployed to infer the safety of new compounds. The
current study has the potential to expand its scope by in-
corporating additional biological variables such as action
potential [16], or in-silico biomarkers proposed in the lit-
erature [10]. This would significantly aid in selecting pa-
rameters prior to simulations, for a reduced computational
time and a more reliable and rational variable selection.
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